计算机科学技术书籍
GO、黑客、Android、计算机原理、人工智能、大数据、机器学习、数据库、PHP、java、架构、消息队列、算法、python、爬虫、操作系统、linux、C语言:
https://github.com/TIM168/technical_books
计算机科学,软件技术,创业,思想类,数学类,人物传记书籍:https://github.com/0voice/expert_readed_books
国内几所大学专业课程资料整理:https://github.com/lib-pku/libpku
NLP自然语言处理资料汇总:
中英文敏感词、语言检测、中外手机/电话归属地/运营商查询、名字推断性别、手机号抽取、身份证抽取、邮箱抽取、中日文人名库、中文缩写库、拆字词典、词汇情感值、停用词、反动词表、暴恐词表、繁简体转换、英文模拟中文发音、汪峰歌词生成器、职业名称词库、同义词库、反义词库、否定词库、汽车品牌词库、汽车零件词库、连续英文切割、各种中文词向量、公司名字大全、古诗词库、IT词库、财经词库、成语词库、地名词库、历史名人词库、诗词词库、医学词库、饮食词库、法律词库、汽车词库、动物词库、中文聊天语料、中文谣言数据、百度中文问答数据集、句子相似度匹配算法集合、bert资源、文本生成&摘要相关工具、cocoNLP信息抽取工具、国内电话号码正则匹配、清华大学XLORE:中英文跨语言百科知识图谱、清华大学人工智能技术:
https://github.com/fighting41love/funNLP
AI书籍与算法源码
神经网络与深度学习:https://nndl.github.io/
统计学方法:https://github.com/SmirkCao/Lihang
统计学方法习题答案:https://datawhalechina.github.io/statistical-learning-method-solutions-manual/#/
https://github.com/SuperCV/Book
机器学习:
- https://github.com/MorvanZhou/tutorials
- https://github.com/lawlite19/MachineLearning_Python
- 西瓜书 https://github.com/datawhalechina/pumpkin-book
- 机器视觉:https://github.com/Ewenwan/MVision
- 视觉算法排名:https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark
- 机器学习资源大全中文版:https://github.com/jobbole/awesome-machine-learning-cn
- 机器数学与代码实现:https://ailearning.apachecn.org/#/
https://github.com/fengdu78/lihang-code
https://github.com/Dod-o/Statistical-Learning-Method_Code
https://github.com/WenDesi/lihang_book_algorithm
https://github.com/zslucky/awesome-AI-books
https://github.com/dsgiitr/d2l-pytorch
https://github.com/1033020837/Basic4AI
https://github.com/xmj-ai/deeplearning_ai_books
https://github.com/lllhhh/BooksKeeper
https://github.com/cosen1024/awesome-cs-books
https://github.com/wugenqiang/NoteBook
https://github.com/bat67/awesome-ai-books-and-code
https://github.com/china-testing/python-api-tesing
https://github.com/iamshuaidi/CS-Book
https://github.com/itdevbooks/pdf
https://github.com/getsources/CS-Growing-book
https://github.com/861664308/Tensorflow-Keras--
https://github.com/jlgulu/PythonAIPath-Geek
https://github.com/zhangziliang04/aipm
https://github.com/Baiyuetribe/paper2gui
https://github.com/Robinwho/Deep-Learning
构建开源对话机器人:https://github.com/Chinese-NLP-book/rasa_chinese_book_code
http://lnbook.wenqujingdian.com/Public/editor/attached/file/3/018/017/18581.pdf
http://home.ustc.edu.cn/~yang96/Elements_of_Information_Theory-second_edition.pdf
《Navin Sabharwal - Hands-on Question Answering Systems with BERT_ Applications in Neural Networks and Natural Language Processing-Apress (2021)》
《Sudharsan Ravichandiran - Getting Started with Google BERT_ Build and train state-of-the-art natural language processing models using BERT-Packt Publishing Ltd (2021)》
- https://github.com/datawhalechina/statistical-learning-method-solutions-manual
- https://github.com/fengdu78/deeplearning_ai_books
- https://github.com/Microstrong0305/Python2AI
- https://github.com/chatopera/Synonyms
- https://github.com/cj0012/AI-Practice-Tensorflow-Notes
- https://github.com/YeonwooSung/ai_book
- https://github.com/jikexueyuanwiki/tensorflow-zh
- https://github.com/JDHHH/AI-Books
- https://github.com/lihanghang/Deep-learning-And-Paper
- https://github.com/koryako/FundamentalsOfAI_book_code
- https://github.com/zhangbincheng1997/chatbot-aiml-webqa
- https://github.com/qqqil/books
- https://github.com/KeKe-Li/books
- https://github.com/KeKe-Li/tutorial
- https://github.com/search?q=%E7%BB%9F%E8%AE%A1%E5%AD%A6%E6%96%B9%E6%B3%95
- https://github.com/Dujltqzv/Some-Many-Books
计算机视觉实时动态
https://openaccess.thecvf.com/menu
3D 对象检测
参考来自: https://github.com/Tom-Hardy-3D-Vision-Workshop/awesome-3D-object-detection
https://github.com/TianhaoFu/Awesome-3D-Object-Detection
数据集
- KITTI 数据集
- 3,712 个训练样本
- 3,769 个验证样本
- 7,518个测试样本
- nuScenes 数据集
- 28k 训练样本
- 6k 验证样本
- 6k 测试样本
- Lyft 数据集
- Waymo 开放数据集
- 798 个训练序列,大约 158、361 个 LiDAR 样本
- 202 个验证序列,包含 40、077 个 LiDAR 样本。
顶级会议和研讨会
会议
- 计算机视觉与模式识别会议(CVPR)
- 计算机视觉国际会议(ICCV)
- 欧洲计算机视觉会议(ECCV)
作坊
- CVPR 2019 自动驾驶研讨会(nuScenes 3D detection)
- CVPR 2020 自动驾驶研讨会(BDD1k 3D tracking)
- CVPR 2021 自动驾驶研讨会(waymo 3D检测)
- CVPR 2022 自动驾驶研讨会(waymo 3D检测)
- CVPR 2021 3D 视觉和机器人研讨会
- CVPR 2021 视觉、图形和机器人 3D 场景理解研讨会
- ICCV 2019 自动驾驶研讨会
- ICCV 2021 自动驾驶汽车视觉研讨会(AVVision),注
- ICCV 2021 研讨会 SSLAD Track 2–3D 对象检测
- ECCV 2020 自动驾驶汽车指令研讨会
- ECCV 2020 自动驾驶感知研讨会
论文(基于激光雷达的方法)
- 用于 LiDAR 点云中 3D 对象检测的端到端多视图融合论文
- 使用全卷积网络(百度)论文从 3D 激光雷达进行车辆检测
- VoxelNet:基于点云的 3D 对象检测论文的端到端学习
- 使用深度卷积网络论文在占用网格地图中进行对象检测和分类
- RT3D:用于自动驾驶的 LiDAR 点云中的实时 3-D 车辆检测论文
- BirdNet:来自 LiDAR 信息论文的 3D 对象检测框架
- LMNet:使用 3D LiDAR论文在 CPU 上进行实时多类目标检测
- HDNET: Exploit HD Maps for 3D Object Detection论文
- PointNet:用于 3D 分类和分割的点集的深度学习论文
- PointNet++:度量空间中点集的深度分层特征学习论文
- IPOD: Intensive Point-based Object Detector for Point Cloud论文
- PIXOR:来自点云的实时 3D 对象检测论文
- DepthCN:车辆检测使用 3D-LIDAR 和 ConvNet论文
- Voxel-FPN:点云 3D 对象检测中的多尺度体素特征聚合论文
- STD:点云纸的稀疏到密集 3D 对象检测器
- 快速点 R-CNN论文
- StarNet:点云中目标检测的目标计算论文
- 点云 3D 对象检测论文的类平衡分组和采样
- LaserNet:一种用于自动驾驶论文的高效概率 3D 对象检测器
- FVNet:3D Front-View Proposal Generation for Real-Time Object Detection from Point Clouds论文
- Part-A² Net:3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud论文
- PointRCNN:3D Object Proposal Generation and Detection from Point Cloud论文
- Complex-YOLO:点云上的实时 3D 对象检测论文
- YOLO4D: A ST Approach for RT Multi-object Detection and Classification from LiDAR Point Clouds论文
- YOLO3D:来自 LiDAR 点云论文的端到端实时 3D 面向对象边界框检测
- 使用 Pseudo-LiDAR 点云论文进行单目 3D 对象检测
- Structure Aware Single-stage 3D Object Detection from Point Cloud(CVPR2020)论文 代码
- MLCVNet: Multi-Level Context VoteNet for 3D Object Detection(CVPR2020)论文 代码
- 3DSSD: Point-based 3D Single Stage Object Detector(CVPR2020)论文 代码
- LiDAR-based Online 3D Video Object Detection with Graph-based Message Passing and Spatiotemporal Transformer Attention(CVPR2020)论文 代码
- PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection(CVPR2020)论文 代码
- Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud(CVPR2020)论文 代码
- MLCVNet: Multi-Level Context VoteNet for 3D Object Detection(CVPR2020)论文
- Density Based Clustering for 3D Object Detection in Point Clouds(CVPR2020)论文
- 所见即所得:Exploiting Visibility for 3D Object Detection(CVPR2020)论文
- PointPainting: Sequential Fusion for 3D Object Detection (CVPR2020)论文
- HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection(CVPR2020)论文
- LiDAR R-CNN: An Efficient and Universal 3D Object Detector(CVPR2021)论文
- Center-based 3D Object Detection and Tracking (CVPR2021)论文
- 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection (CVPR2021)论文
- Embracing Single Stride 3D Object Detector with Sparse Transformer(CVPR2022)论文,代码
- Point Density-Aware Voxels for LiDAR 3D Object Detection (CVPR2022)论文,代码
- A Unified Query-based Paradigm for Point Cloud Understanding (CVPR2022)论文
- Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds (CVPR2022)论文,代码
- 并非所有的点都是平等的:Learning High Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR2022)论文,代码
- 回到现实:Weakly-supervised 3D Object Detection with Shape-guided Label Enhancement(CVPR2022)论文,代码
- Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)论文,代码
- BoxeR: Box-Attention for 2D and 3D Transformers(CVPR2022)论文,代码,中文介绍
- 规范投票:Towards Robust Oriented Bounding Box Detection in 3D Scenes (CVPR2022)论文,代码
- DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection(CVPR2022)论文,代码
- TransFusion:使用 Transformers 进行 3D 对象检测的稳健 LiDAR-Camera Fusion。(CVPR2022)论文,代码
- Point2Seq:将 3D 对象检测为序列。(CVPR2022)论文,代码
- CAT-Det:用于多模态 3D 对象检测的对比增强变压器(CVPR2022)论文
- LiDAR Snowfall Simulation for Robust 3D Object Detection (CVPR2022)论文,代码
- Unified Transformer Tracker for Object Tracking (CVPR2022)论文,代码
- Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion (CVPR2022)论文
- Unified Transformer Tracker for Object Tracking (CVPR2022)论文,代码
竞赛解决方案
工程
调查
- 2021.04 用于自动驾驶应用的基于点云的 3D 对象检测和分类方法:调查和分类论文
- 2021.07 用于自动驾驶的 3D 对象检测:调查论文
- 2021.07 自动驾驶中的多模态 3D 对象检测:调查论文
- 2021.10 基于激光雷达的 3D 物体检测方法与深度学习的自动驾驶论文综合调查
- 2021.12 3D 点云的深度学习:调查论文
书
- 基于激光雷达和摄像头的 3D 对象检测算法:设计与仿真书
视频
- Aivia 在线研讨会:3D 对象检测和跟踪视频
- 3D 对象检索 2021 研讨会视频
- 来自 UCSD视频的 SU 实验室的 3D 深度学习教程
- 讲座:自动驾驶汽车(图宾根大学 Andreas Geiger 教授)视频
- 点云对象的当前方法和未来方向 (2021.04)视频
- CPU 上 30+ FPS 的最新 3D 对象检测 — MediaPipe 和 OpenCV Python (2021.05)视频
- MIT自动驾驶研讨会(2019.11)视频
- sensetime 研讨会1视频
- sensetime 研讨会 2张幻灯片
课程
博客
- Waymo 博客
- apollo介绍之感知模块
- Apollo 笔记(Apollo 学习笔记)— Apollo 初学者学习笔记。
- PointNet系列论文解读
- Deep3dBox:使用深度学习和几何进行 3D 边界框估计
- SECOND算法解析
- PointRCNN深度解析
- Fast PointRCNN论文解读
- PointPillars论文和代码解析
- VoxelNet论文和代码解析
- CenterPoint分析
- PV-RCNN:3D目标检测Waymo模态挑战赛+KITTI榜单模态第一模挑战赛
- LiDAR R-CNN:一种快速、通用的二类3D检测器
- 混合体素网络(HVNet)
- 自动驾驶汽车| 范围图像纸分享
- SST:单步放大装置Transformer 3D探测仪
著名研究组/学者
- 王乃燕@Tusimple
- 李洪生@CUHK
- 一次 Tuzel@Apple
- 奥斯卡Beijbom@nuTonomy
- Raquel Urtasun@多伦多大学
- Philipp Krähenbühl@UT Austin
- 德瓦拉马南@CMU
- 贾家亚@CUHK
- Thomas Funkhouser@princeton
- 列奥尼达斯·吉巴斯@斯坦福
- 史蒂文·瓦斯兰德@多伦多大学
- Ouais Alsharif@Google 大脑
- 柴育宁(前)@waymo
- 郭玉兰@NUDT
- 张磊@香港理工大学
- 李洪洋@sensetime
著名的代码库
- 点云库 (PCL)
- Spconv
- Det3D
- 毫米检测3d
- 开放PCDet
- 中心点
- Apollo Auto——百度开放自动驾驶平台
- AutoWare——东京大学自动驾驶平台
- Openpilot — 一种开源软件,旨在改进当今道路上大多数新车的现有驾驶员辅助
深度学习点云参考论文来源
- Recent papers (from 2017)
- Recent papers (from 2017) |
Keywords
dat.
: dataset   |   cls.
: classification   |   rel.
: retrieval   |   seg.
: segmentationdet.
: detection   |   tra.
: tracking   |   pos.
: pose   |   dep.
: depthreg.
: registration   |   rec.
: reconstruction   |   aut.
: autonomous drivingoth.
: other, including normal-related, correspondence, mapping, matching, alignment, compression, generative model…
Statistics: 🔥 code is available & stars >= 100  |  ⭐️ citation >= 50
2017
- [CVPR] PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. [tensorflow][pytorch] [
cls.
seg.
det.
] 🔥 ⭐️ - [CVPR] Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. [
cls.
] ⭐️ - [CVPR] SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation. [torch] [
seg.
oth.
] ⭐️ - [CVPR] ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. [project][git] [
dat.
cls.
rel.
seg.
oth.
] 🔥 ⭐️ - [CVPR] Scalable Surface Reconstruction from Point Clouds with Extreme Scale and Density Diversity. [
oth.
] - [CVPR] Efficient Global Point Cloud Alignment using Bayesian Nonparametric Mixtures. [code] [
oth.
] - [CVPR] Discriminative Optimization: Theory and Applications to Point Cloud Registration. [
reg.
] - [CVPR] 3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder. [git] [
reg.
] - [CVPR] Multi-View 3D Object Detection Network for Autonomous Driving. [tensorflow] [
det.
aut.
] 🔥 ⭐️ - [CVPR] 3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions. [code] [
dat.
pos.
reg.
rec.
oth.
] 🔥 ⭐️ - [CVPR] OctNet: Learning Deep 3D Representations at High Resolutions. [torch] [
cls.
seg.
oth.
] 🔥 ⭐️ - [ICCV] Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models. [pytorch] [
cls.
rel.
seg.
] ⭐️ - [ICCV] 3DCNN-DQN-RNN: A Deep Reinforcement Learning Framework for Semantic Parsing of Large-scale 3D Point Clouds. [code] [
seg.
] - [ICCV] Colored Point Cloud Registration Revisited. [
reg.
] - [ICCV] PolyFit: Polygonal Surface Reconstruction from Point Clouds. [code] [
rec.
] 🔥 - [ICCV] From Point Clouds to Mesh using Regression. [
rec.
] - [ICCV] 3D Graph Neural Networks for RGBD Semantic Segmentation. [pytorch] [
seg.
] - [NeurIPS] PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. [tensorflow][pytorch] [
cls.
seg.
] 🔥 ⭐️ - [NeurIPS] Deep Sets. [pytorch] [
cls.
] ⭐️ - [ICRA] Vote3Deep: Fast object detection in 3D point clouds using efficient convolutional neural networks. [code] [
det.
aut.
] ⭐️ - [ICRA] Fast segmentation of 3D point clouds: A paradigm on LiDAR data for autonomous vehicle applications. [code] [
seg.
aut.
] - [ICRA] SegMatch: Segment based place recognition in 3D point clouds. [
seg.
oth.
] - [ICRA] Using 2 point+normal sets for fast registration of point clouds with small overlap. [
reg.
] - [IROS] Car detection for autonomous vehicle: LIDAR and vision fusion approach through deep learning framework. [
det.
aut.
] - [IROS] 3D object classification with point convolution network. [
cls.
] - [IROS] 3D fully convolutional network for vehicle detection in point cloud. [tensorflow] [
det.
aut.
] 🔥 ⭐️ - [IROS] Deep learning of directional truncated signed distance function for robust 3D object recognition. [
det.
pos.
] - [IROS] Analyzing the quality of matched 3D point clouds of objects. [
oth.
] - [3DV] SEGCloud: Semantic Segmentation of 3D Point Clouds. [project] [
seg.
aut.
] ⭐️ - [TPAMI] Structure-aware Data Consolidation. [
oth.
]
2018
- [CVPR] SPLATNet: Sparse Lattice Networks for Point Cloud Processing. [caffe] [
seg.
] 🔥 - [CVPR] Attentional ShapeContextNet for Point Cloud Recognition. [
cls.
seg.
] - [CVPR] Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling. [code] [
cls.
seg.
] - [CVPR] FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation. [code] [
cls.
] - [CVPR] Pointwise Convolutional Neural Networks. [tensorflow] [
cls.
seg.
] - [CVPR] PU-Net: Point Cloud Upsampling Network. [tensorflow] [
rec.
oth.
] 🔥 - [CVPR] SO-Net: Self-Organizing Network for Point Cloud Analysis. [pytorch] [
cls.
seg.
] 🔥 ⭐️ - [CVPR] Recurrent Slice Networks for 3D Segmentation of Point Clouds. [pytorch] [
seg.
] - [CVPR] 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. [pytorch] [
seg.
] 🔥 - [CVPR] Deep Parametric Continuous Convolutional Neural Networks. [
seg.
aut.
] - [CVPR] PIXOR: Real-time 3D Object Detection from Point Clouds. [pytorch] [
det.
aut.
] - [CVPR] SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation. [tensorflow] [
seg.
] 🔥 - [CVPR] Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs. [pytorch] [
seg.
] 🔥 - [CVPR] VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. [tensorflow] [
det.
aut.
] 🔥 ⭐️ - [CVPR] Reflection Removal for Large-Scale 3D Point Clouds. [
oth.
] - [CVPR] Hand PointNet: 3D Hand Pose Estimation using Point Sets. [pytorch] [
pos.
] - [CVPR] PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition. [tensorflow] [
rel.
] 🔥 - [CVPR] A Network Architecture for Point Cloud Classification via Automatic Depth Images Generation. [
cls.
] - [CVPR] Density Adaptive Point Set Registration. [code] [
reg.
] - [CVPR] A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds. [
seg.
] - [CVPR] Inverse Composition Discriminative Optimization for Point Cloud Registration. [
reg.
] - [CVPR] CarFusion: Combining Point Tracking and Part Detection for Dynamic 3D Reconstruction of Vehicles. [
tra.
det.
rec.
] - [CVPR] PPFNet: Global Context Aware Local Features for Robust 3D Point Matching. [
oth.
] - [CVPR] PointGrid: A Deep Network for 3D Shape Understanding. [tensorflow] [
cls.
seg.
] - [CVPR] PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation. [code] [
det.
aut.
] - [CVPR] Frustum PointNets for 3D Object Detection from RGB-D Data. [tensorflow] [
det.
aut.
] 🔥 ⭐️ - [CVPR] Tangent Convolutions for Dense Prediction in 3D. [tensorflow] [
seg.
aut.
] - [ECCV] Multiresolution Tree Networks for 3D Point Cloud Processing. [pytorch] [
cls.
] - [ECCV] EC-Net: an Edge-aware Point set Consolidation Network. [tensorflow] [
oth.
] - [ECCV] 3D Recurrent Neural Networks with Context Fusion for Point Cloud Semantic Segmentation. [
seg.
] - [ECCV] Learning and Matching Multi-View Descriptors for Registration of Point Clouds. [
reg.
] - [ECCV] 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration. [tensorflow] [
reg.
] - [ECCV] Local Spectral Graph Convolution for Point Set Feature Learning. [tensorflow] [
cls.
seg.
] - [ECCV] SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters. [tensorflow] [
cls.
seg.
] - [ECCV] Efficient Global Point Cloud Registration by Matching Rotation Invariant Features Through Translation Search. [
reg.
] - [ECCV] Efficient Dense Point Cloud Object Reconstruction using Deformation Vector Fields. [
rec.
] - [ECCV] Fully-Convolutional Point Networks for Large-Scale Point Clouds. [tensorflow] [
seg.
oth.
] - [ECCV] Deep Continuous Fusion for Multi-Sensor 3D Object Detection. [
det.
] - [ECCV] HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration. [
reg.
] - [ECCV] Point-to-Point Regression PointNet for 3D Hand Pose Estimation. [
pos.
] - [ECCV] PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors. [
oth.
] - [ECCVW] 3DContextNet: K-d Tree Guided Hierarchical Learning of Point Clouds Using Local and Global Contextual Cues. [
cls.
seg.
] - [ECCVW] YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud. [
det.
aut.
] - [AAAI] Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction. [tensorflow] [
rec.
] 🔥 - [AAAI] Adaptive Graph Convolutional Neural Networks. [
cls.
] - [NeurIPS] Unsupervised Learning of Shape and Pose with Differentiable Point Clouds. [tensorflow] [
pos.
] - [NeurIPS] PointCNN: Convolution On X-Transformed Points. [tensorflow][pytorch] [
cls.
seg.
] 🔥 - [ICML] Learning Representations and Generative Models for 3D Point Clouds. [code] [
oth.
] 🔥 - [TOG] Point Convolutional Neural Networks by Extension Operators. [tensorflow] [
cls.
seg.
] - [SIGGRAPH] P2P-NET: Bidirectional Point Displacement Net for Shape Transform. [tensorflow] [
oth.
] - [SIGGRAPH Asia] Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds. [tensorflow] [
cls.
seg.
oth.
] - [SIGGRAPH] Learning local shape descriptors from part correspondences with multi-view convolutional networks. [project] [
seg.
oth.
] - [MM] PVNet: A Joint Convolutional Network of Point Cloud and Multi-View for 3D Shape Recognition. [
cls.
rel.
] - [MM] RGCNN: Regularized Graph CNN for Point Cloud Segmentation. [tensorflow] [
seg.
] - [MM] Hybrid Point Cloud Attribute Compression Using Slice-based Layered Structure and Block-based Intra Prediction. [
oth.
] - [ICRA] End-to-end Learning of Multi-sensor 3D Tracking by Detection. [
det.
tra.
aut.
] - [ICRA] Multi-View 3D Entangled Forest for Semantic Segmentation and Mapping. [
seg.
oth.
] - [ICRA] SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud. [tensorflow] [
seg.
aut.
] - [ICRA] Robust Real-Time 3D Person Detection for Indoor and Outdoor Applications. [
det.
] - [ICRA] High-Precision Depth Estimation with the 3D LiDAR and Stereo Fusion. [
dep.
aut.
] - [ICRA] Sampled-Point Network for Classification of Deformed Building Element Point Clouds. [
cls.
] - [ICRA] Gemsketch: Interactive Image-Guided Geometry Extraction from Point Clouds. [
oth.
] - [ICRA] Signature of Topologically Persistent Points for 3D Point Cloud Description. [
oth.
] - [ICRA] A General Pipeline for 3D Detection of Vehicles. [
det.
aut.
] - [ICRA] Robust and Fast 3D Scan Alignment Using Mutual Information. [
oth.
] - [ICRA] Delight: An Efficient Descriptor for Global Localisation Using LiDAR Intensities. [
oth.
] - [ICRA] Surface-Based Exploration for Autonomous 3D Modeling. [
oth.
aut.
] - [ICRA] Deep Lidar CNN to Understand the Dynamics of Moving Vehicles. [
oth.
aut.
] - [ICRA] Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds Using a New Analytic Model and Deep Learning. [
oth.
] - [ICRA] Real-Time Object Tracking in Sparse Point Clouds Based on 3D Interpolation. [
tra.
] - [ICRA] Robust Generalized Point Cloud Registration Using Hybrid Mixture Model. [
reg.
] - [ICRA] A General Framework for Flexible Multi-Cue Photometric Point Cloud Registration. [
reg.
] - [ICRA] Efficient Continuous-Time SLAM for 3D Lidar-Based Online Mapping. [
oth.
] - [ICRA] Direct Visual SLAM Using Sparse Depth for Camera-LiDAR System. [
oth.
] - [ICRA] Spatiotemporal Learning of Dynamic Gestures from 3D Point Cloud Data. [
cls.
] - [ICRA] Asynchronous Multi-Sensor Fusion for 3D Mapping and Localization. [
oth.
] - [ICRA] Complex Urban LiDAR Data Set. [video] [
dat.
oth.
] - [IROS] CalibNet: Geometrically Supervised Extrinsic Calibration using 3D Spatial Transformer Networks.[tensorflow] [
oth.
aut.
] - [IROS] Dynamic Scaling Factors of Covariances for Accurate 3D Normal Distributions Transform Registration. [
reg.
] - [IROS] A 3D Laparoscopic Imaging System Based on Stereo-Photogrammetry with Random Patterns. [
rec.
oth.
] - [IROS] Robust Generalized Point Cloud Registration with Expectation Maximization Considering Anisotropic Positional Uncertainties. [
reg.
] - [IROS] Octree map based on sparse point cloud and heuristic probability distribution for labeled images. [
oth.
aut.
] - [IROS] PoseMap: Lifelong, Multi-Environment 3D LiDAR Localization. [
oth.
] - [IROS] Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map. [
oth.
] - [IROS] LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain.[code] [
pos.
oth.
] 🔥 - [IROS] Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds. [
cls.
] - [IROS] Stereo Camera Localization in 3D LiDAR Maps. [
pos.
oth.
] - [IROS] Joint 3D Proposal Generation and Object Detection from View Aggregation. [
det.
] ⭐️ - [IROS] Joint Point Cloud and Image Based Localization for Efficient Inspection in Mixed Reality. [
oth.
] - [IROS] Edge and Corner Detection for Unorganized 3D Point Clouds with Application to Robotic Welding. [
det.
oth.
] - [IROS] NDVI Point Cloud Generator Tool Using Low-Cost RGB-D Sensor. [code][
oth.
] - [IROS] A 3D Convolutional Neural Network Towards Real-Time Amodal 3D Object Detection. [
det.
pos.
] - [IROS] Extracting Phenotypic Characteristics of Corn Crops Through the Use of Reconstructed 3D Models. [
seg.
rec.
] - [IROS] PCAOT: A Manhattan Point Cloud Registration Method Towards Large Rotation and Small Overlap. [
reg.
] - [IROS] [Tensorflow]3DmFV: Point Cloud Classification and segmentation for unstructured 3D point clouds. [
cls.
] - [IROS] Seeing the Wood for the Trees: Reliable Localization in Urban and Natural Environments. [
oth.
] - [SENSORS] SECOND: Sparsely Embedded Convolutional Detection. [pytorch] [
det.
aut.
] 🔥 - [ACCV] Flex-Convolution (Million-Scale Point-Cloud Learning Beyond Grid-Worlds). [tensorflow] [
seg.
] - [3DV] PCN: Point Completion Network. [tensorflow] [
reg.
oth.
aut.
] 🔥 - [ICASSP] A Graph-CNN for 3D Point Cloud Classification. [tensorflow] [
cls.
] 🔥 - [ITSC] BirdNet: a 3D Object Detection Framework from LiDAR information. [
det.
aut.
] - [arXiv] PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation. [tensorflow] [
seg.
] 🔥 - [arXiv] Spherical Convolutional Neural Network for 3D Point Clouds. [
cls.
] - [arXiv] Adversarial Autoencoders for Generating 3D Point Clouds. [
oth.
] - [arXiv] Iterative Transformer Network for 3D Point Cloud. [
cls.
seg.
pos.
] - [arXiv] Topology-Aware Surface Reconstruction for Point Clouds. [
rec.
] - [arXiv] Inferring Point Clouds from Single Monocular Images by Depth Intermediation. [
oth.
] - [arXiv] Deep RBFNet: Point Cloud Feature Learning using Radial Basis Functions. [
cls.
] - [arXiv] IPOD: Intensive Point-based Object Detector for Point Cloud. [
det.
] - [arXiv] Feature Preserving and Uniformity-controllable Point Cloud Simplification on Graph. [
oth.
] - [arXiv] POINTCLEANNET: Learning to Denoise and Remove Outliers from Dense Point Clouds. [pytorch] [
oth.
] - [arXiv] Complex-YOLO: Real-time 3D Object Detection on Point Clouds. [pytorch] [
det.
aut.
] 🔥 - [arxiv] RoarNet: A Robust 3D Object Detection based on RegiOn Approximation Refinement. [tensorflow] [
det.
aut.
] - [arXiv] Multi-column Point-CNN for Sketch Segmentation. [
seg.
] - [arXiv] PointGrow: Autoregressively Learned Point Cloud Generation with Self-Attention. [project] [
oth.
] - [arXiv] Point Cloud GAN. [pytorch] [
oth.
]
2019
- [CVPR] Relation-Shape Convolutional Neural Network for Point Cloud Analysis. [pytorch] [
cls.
seg.
oth.
] 🔥 - [CVPR] Spherical Fractal Convolutional Neural Networks for Point Cloud Recognition. [
cls.
seg.
] - [CVPR] DeepMapping: Unsupervised Map Estimation From Multiple Point Clouds. [code] [
reg.
] - [CVPR] Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. [code] [
det.
dep.
aut.
] - [CVPR] PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud. [pytorch] [
det.
aut.
] 🔥 - [CVPR] Generating 3D Adversarial Point Clouds. [code] [
oth.
] - [CVPR] Modeling Point Clouds with Self-Attention and Gumbel Subset Sampling. [
cls.
seg.
] - [CVPR] A-CNN: Annularly Convolutional Neural Networks on Point Clouds. [tensorflow][
cls.
seg.
] - [CVPR] PointConv: Deep Convolutional Networks on 3D Point Clouds. [tensorflow] [
cls.
seg.
] 🔥 - [CVPR] Path-Invariant Map Networks. [tensorflow] [
seg.
oth.
] - [CVPR] PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding. [code] [
dat.
seg.
] - [CVPR] GeoNet: Deep Geodesic Networks for Point Cloud Analysis. [
cls.
rec.
oth.
] - [CVPR] Associatively Segmenting Instances and Semantics in Point Clouds. [tensorflow] [
seg.
] 🔥 - [CVPR] Supervised Fitting of Geometric Primitives to 3D Point Clouds. [tensorflow] [
oth.
] - [CVPR] Octree guided CNN with Spherical Kernels for 3D Point Clouds. [extension] [code] [
cls.
seg.
] - [CVPR] PointNetLK: Point Cloud Registration using PointNet. [pytorch] [
reg.
] - [CVPR] JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds with Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields. [pytorch] [
seg.
] - [CVPR] Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning. [
seg.
] - [CVPR] PointPillars: Fast Encoders for Object Detection from Point Clouds. [pytorch] [
det.
] 🔥 - [CVPR] Patch-based Progressive 3D Point Set Upsampling. [tensorflow] [
oth.
] - [CVPR] PCAN: 3D Attention Map Learning Using Contextual Information for Point Cloud Based Retrieval. [code] [
rel.
] - [CVPR] PartNet: A Recursive Part Decomposition Network for Fine-grained and Hierarchical Shape Segmentation. [pytorch] [
dat.
seg.
] - [CVPR] PointFlowNet: Learning Representations for Rigid Motion Estimation from Point Clouds. [code] [
det.
dat.
oth.
] - [CVPR] SDRSAC: Semidefinite-Based Randomized Approach for Robust Point Cloud Registration without Correspondences. [matlab] [
reg.
] - [CVPR] Deep Reinforcement Learning of Volume-guided Progressive View Inpainting for 3D Point Scene Completion from a Single Depth Image. [
rec.
oth.
] - [CVPR] Embodied Question Answering in Photorealistic Environments with Point Cloud Perception. [
oth.
] - [CVPR] 3D Point-Capsule Networks. [pytorch] [
cls.
rec.
oth.
] - [CVPR] 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. [pytorch] [
seg.
] 🔥 - [CVPR] The Perfect Match: 3D Point Cloud Matching with Smoothed Densities. [tensorflow] [
oth.
] - [CVPR] FilterReg: Robust and Efficient Probabilistic Point-Set Registration using Gaussian Filter and Twist Parameterization. [code] [
reg.
] - [CVPR] FlowNet3D: Learning Scene Flow in 3D Point Clouds. [
oth.
] - [CVPR] Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN. [
cls.
det.
] - [CVPR] ClusterNet: Deep Hierarchical Cluster Network with Rigorously Rotation-Invariant Representation for Point Cloud Analysis. [
cls.
] - [CVPR] PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing. [pytorch] [
cls.
seg.
] - [CVPR] RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for Real-Time Point Cloud Shape Completion. [code] [
oth.
] - [CVPR] PointNetLK: Robust & Efficient Point Cloud Registration using PointNet. [pytorch] [
reg.
] - [CVPR] Robust Point Cloud Based Reconstruction of Large-Scale Outdoor Scenes. [code] [
rec.
] - [CVPR] Nesti-Net: Normal Estimation for Unstructured 3D Point Clouds using Convolutional Neural Networks. [tensorflow] [
oth.
] - [CVPR] GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud. [
seg.
] - [CVPR] Graph Attention Convolution for Point Cloud Semantic Segmentation. [
seg.
] - [CVPR] Point-to-Pose Voting based Hand Pose Estimation using Residual Permutation Equivariant Layer. [
pos.
] - [CVPR] LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving. [
det.
aut.
] - [CVPR] LP-3DCNN: Unveiling Local Phase in 3D Convolutional Neural Networks. [project] [
cls.
seg.
] - [CVPR] Structural Relational Reasoning of Point Clouds. [
cls.
seg.
] - [CVPR] 3DN: 3D Deformation Network. [tensorflow] [
rec.
oth.
] - [CVPR] Privacy Preserving Image-Based Localization. [
pos.
oth.
] - [CVPR] Argoverse: 3D Tracking and Forecasting With Rich Maps.[
tra.
aut.
] - [CVPR] Leveraging Shape Completion for 3D Siamese Tracking. [pytorch] [
tra.
] - [CVPRW] Attentional PointNet for 3D-Object Detection in Point Clouds. [pytorch] [
cls.
det.
aut.
] - [CVPR] 3D Local Features for Direct Pairwise Registration. [
reg.
] - [CVPR] Learning to Sample. [tensorflow] [
cls.
rec.
] - [CVPR] Revealing Scenes by Inverting Structure from Motion Reconstructions. [code] [
rec.
] - [CVPR] DeepLiDAR: Deep Surface Normal Guided Depth Prediction for Outdoor Scene from Sparse LiDAR Data and Single Color Image. [pytorch] [
dep.
] - [CVPR] HPLFlowNet: Hierarchical Permutohedral Lattice FlowNet for Scene Flow Estimation on Large-scale Point Clouds. [pytorch] [
oth.
] - [ICCV] Deep Hough Voting for 3D Object Detection in Point Clouds. [pytorch] [tensorflow] [
det.
] 🔥 - [ICCV] DeepGCNs: Can GCNs Go as Deep as CNNs? [tensorflow] [pytorch] [
seg.
] 🔥 - [ICCV] PU-GAN: a Point Cloud Upsampling Adversarial Network. [tensorflow] [
oth.
] - [ICCV] 3D Point Cloud Learning for Large-scale Environment Analysis and Place Recognition. [
rel.
oth.
] - [ICCV] PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows. [pytorch] [
oth.
] - [ICCV] Multi-Angle Point Cloud-VAE: Unsupervised Feature Learning for 3D Point Clouds from Multiple Angles by Joint Self-Reconstruction and Half-to-Half Prediction. [
oth.
] - [ICCV] SO-HandNet: Self-Organizing Network for 3D Hand Pose Estimation with Semi-supervised Learning. [code] [
pos.
] - [ICCV] DUP-Net: Denoiser and Upsampler Network for 3D Adversarial Point Clouds Defense. [
oth.
] - [ICCV] Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data. [
cls.
dat.
] [code] [dataset] - [ICCV] KPConv: Flexible and Deformable Convolution for Point Clouds. [tensorflow] [
cls.
seg.
] 🔥 - [ICCV] ShellNet: Efficient Point Cloud Convolutional Neural Networks using Concentric Shells Statistics. [project] [
seg.
] - [ICCV] Point-Based Multi-View Stereo Network. [pytorch] [
rec.
] - [ICCV] DensePoint: Learning Densely Contextual Representation for Efficient Point Cloud Processing. [pytorch] [
cls.
seg.
oth.
] - [ICCV] DeepICP: An End-to-End Deep Neural Network for 3D Point Cloud Registration. [
reg.
] - [ICCV] 3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions. [pytorch] [
oth.
] - [ICCV] Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. [
seg.
] - [ICCV] Learning an Effective Equivariant 3D Descriptor Without Supervision. [
oth.
] - [ICCV] Fully Convolutional Geometric Features. [pytorch] [
reg.
] - [ICCV] LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis. [
oth.
aut.
] - [ICCV] Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning. [tensorflow] [
oth.
] - [ICCV] USIP: Unsupervised Stable Interest Point Detection from 3D Point Clouds. [pytorch] [
oth.
] - [ICCV] Interpolated Convolutional Networks for 3D Point Cloud Understanding. [
cls.
seg.
] - [ICCV] PointCloud Saliency Maps. [code] [
oth.
] - [ICCV] STD: Sparse-to-Dense 3D Object Detector for Point Cloud. [
det.
oth.
] - [ICCV] Accelerated Gravitational Point Set Alignment with Altered Physical Laws. [
reg.
] - [ICCV] Deep Closest Point: Learning Representations for Point Cloud Registration. [
reg.
] - [ICCV] Efficient Learning on Point Clouds with Basis Point Sets. [code] [
cls.
reg.
] - [ICCV] PointAE: Point Auto-encoder for 3D Statistical Shape and Texture Modelling. [
rec.
] - [ICCV] Skeleton-Aware 3D Human Shape Reconstruction From Point Clouds. [
rec.
] - [ICCV] Dynamic Points Agglomeration for Hierarchical Point Sets Learning. [pytorch] [
cls.
seg.
] - [ICCV] Unsupervised Multi-Task Feature Learning on Point Clouds. [
cls.
seg.
] - [ICCV] VV-NET: Voxel VAE Net with Group Convolutions for Point Cloud Segmentation. [tensorflow] [
seg.
] - [ICCV] GraphX-Convolution for Point Cloud Deformation in 2D-to-3D Conversion. [pytorch] [
rec.
] - [ICCV] MeteorNet: Deep Learning on Dynamic 3D Point Cloud Sequences. [code] [
cls.
seg.
oth.
] - [ICCV] Fast Point R-CNN. [
det.
aut.
] - [ICCV] Robust Variational Bayesian Point Set Registration. [
reg.
] - [ICCV] DiscoNet: Shapes Learning on Disconnected Manifolds for 3D Editing. [
rec.
oth.
] - [ICCV] Learning an Effective Equivariant 3D Descriptor Without Supervision. [
oth.
] - [ICCV] 3D Instance Segmentation via Multi-Task Metric Learning. [code] [
seg.
] - [ICCV] 3D Face Modeling From Diverse Raw Scan Data. [
rec.
] - [ICCVW] Range Adaptation for 3D Object Detection in LiDAR. [
det.
aut.
] - [NeurIPS] Self-Supervised Deep Learning on Point Clouds by Reconstructing Space. [
cls.
oth.
] - [NeurIPS] Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. [tensorflow] [
det.
seg.
] - [NeurIPS] Exploiting Local and Global Structure for Point Cloud Semantic Segmentation with Contextual Point Representations. [tensorflow] [
seg.
] - [NeurIPS] Point-Voxel CNN for Efficient 3D Deep Learning. [
det.
seg.
aut.
] - [NeurIPS] PointDAN: A Multi-Scale 3D Domain Adaption Network for Point Cloud Representation. [code] [
cls.
oth.
] - [ICLR] Learning Localized Generative Models for 3D Point Clouds via Graph Convolution. [
oth.
] - [ICMLW] LiDAR Sensor modeling and Data augmentation with GANs for Autonomous driving. [
det.
oth.
aut.
] - [AAAI] CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision. [code] [
rec.
] - [AAAI] Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network. [tensorflow] [
cls.
seg.
] - [AAAI] Point Cloud Processing via Recurrent Set Encoding. [
cls.
] - [AAAI] PVRNet: Point-View Relation Neural Network for 3D Shape Recognition. [pytorch] [
cls.
rel.
] - [AAAI] Hypergraph Neural Networks. [pytorch] [
cls.
] - [TOG] Dynamic Graph CNN for Learning on Point Clouds. [tensorflow][pytorch] [
cls.
seg.
] 🔥 ⭐️ - [TOG] LOGAN: Unpaired Shape Transform in Latent Overcomplete Space. [tensorflow] [
oth.
] - [SIGGRAPH Asia] RPM-Net: recurrent prediction of motion and parts from point cloud. [tensorflow] [
seg.
] - [SIGGRAPH Asia] StructureNet: Hierarchical Graph Networks for 3D Shape Generation. [
seg.
oth.
] - [MM] MMJN: Multi-Modal Joint Networks for 3D Shape Recognition. [
cls.
rel.
] - [MM] 3D Point Cloud Geometry Compression on Deep Learning. [
oth.
] - [MM] SRINet: Learning Strictly Rotation-Invariant Representations for Point Cloud Classification and Segmentation. [tensorflow] [
cls.
seg.
] - [MM] L2G Auto-encoder: Understanding Point Clouds by Local-to-Global Reconstruction with Hierarchical Self-Attention. [
cls.
rel.
] - [MM] Ground-Aware Point Cloud Semantic Segmentation for Autonomous Driving. [code] [
seg.
aut.
] - [ICME] Justlookup: One Millisecond Deep Feature Extraction for Point Clouds By Lookup Tables. [
cls.
rel.
] - [ICASSP] 3D Point Cloud Denoising via Deep Neural Network based Local Surface Estimation. [code] [
oth.
] - [BMVC] Mitigating the Hubness Problem for Zero-Shot Learning of 3D Objects. [
cls.
] - [ICRA] Discrete Rotation Equivariance for Point Cloud Recognition. [pytorch] [
cls.
] - [ICRA] SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud. [tensorflow] [
seg.
aut.
] - [ICRA] Detection and Tracking of Small Objects in Sparse 3D Laser Range Data. [
det.
tra.
aut.
] - [ICRA] Oriented Point Sampling for Plane Detection in Unorganized Point Clouds. [
det.
seg.
] - [ICRA] Point Cloud Compression for 3D LiDAR Sensor Using Recurrent Neural Network with Residual Blocks. [pytorch] [
oth.
] - [ICRA] Focal Loss in 3D Object Detection. [code] [
det.
aut.
] - [ICRA] PointNetGPD: Detecting Grasp Configurations from Point Sets. [pytorch] [
det.
seg.
] - [ICRA] 2D3D-MatchNet: Learning to Match Keypoints across 2D Image and 3D Point Cloud. [
oth.
] - [ICRA] Speeding up Iterative Closest Point Using Stochastic Gradient Descent. [
oth.
] - [ICRA] Uncertainty Estimation for Projecting Lidar Points Onto Camera Images for Moving Platforms. [
oth.
] - [ICRA] SEG-VoxelNet for 3D Vehicle Detection from RGB and LiDAR Data. [
det.
aut.
] - [ICRA] BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving. [project] [
dat.
det.
tra.
aut.
oth.
] - [ICRA] A Fast and Robust 3D Person Detector and Posture Estimator for Mobile Robotic Applications. [
det.
] - [ICRA] Robust low-overlap 3-D point cloud registration for outlier rejection. [matlab] [
reg.
] - [ICRA] Robust 3D Object Classification by Combining Point Pair Features and Graph Convolution. [
cls.
seg.
] - [ICRA] Hierarchical Depthwise Graph Convolutional Neural Network for 3D Semantic Segmentation of Point Clouds. [
seg.
] - [ICRA] Robust Generalized Point Set Registration Using Inhomogeneous Hybrid Mixture Models Via Expectation. [
reg.
] - [ICRA] Dense 3D Visual Mapping via Semantic Simplification. [
oth.
] - [ICRA] MVX-Net: Multimodal VoxelNet for 3D Object Detection. [
det.
aut.
] - [ICRA] CELLO-3D: Estimating the Covariance of ICP in the Real World. [
reg.
] - [IROS] EPN: Edge-Aware PointNet for Object Recognition from Multi-View 2.5D Point Clouds. [tensorflow] [
cls.
det.
] - [IROS] SeqLPD: Sequence Matching Enhanced Loop-Closure Detection Based on Large-Scale Point Cloud Description for Self-Driving Vehicles. [
oth.
] [aut.
] - [IROS] PASS3D: Precise and Accelerated Semantic Segmentation for 3D Point Cloud. [
seg.
aut.
] - [IV] End-to-End 3D-PointCloud Semantic Segmentation for Autonomous Driving. [
seg.
] [aut.
] - [Eurographics Workshop] Generalizing Discrete Convolutions for Unstructured Point Clouds. [pytorch] [
cls.
seg.
] - [WACV] 3DCapsule: Extending the Capsule Architecture to Classify 3D Point Clouds. [
cls.
] - [3DV] Rotation Invariant Convolutions for 3D Point Clouds Deep Learning. [project] [
cls.
seg.
] - [3DV] Effective Rotation-invariant Point CNN with Spherical Harmonics kernels. [tensorflow] [
cls.
seg.
oth.
] - [TVCG] LassoNet: Deep Lasso-Selection of 3D Point Clouds. [project] [
oth.
] - [arXiv] Fast 3D Line Segment Detection From Unorganized Point Cloud. [
det.
] - [arXiv] Point-Cloud Saliency Maps. [tensorflow] [
cls.
oth.
] - [arXiv] Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud Classifiers. [code] [
oth.
] - [arxiv] Context Prediction for Unsupervised Deep Learning on Point Clouds. [
cls.
seg.
] - [arXiv] Points2Pix: 3D Point-Cloud to Image Translation using conditional Generative Adversarial Networks. [
oth.
] - [arXiv] NeuralSampler: Euclidean Point Cloud Auto-Encoder and Sampler. [
cls.
oth.
] - [arXiv] 3D Graph Embedding Learning with a Structure-aware Loss Function for Point Cloud Semantic Instance Segmentation. [
seg.
] - [arXiv] Zero-shot Learning of 3D Point Cloud Objects. [code] [
cls.
] - [arXiv] Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. [
det.
aut.
] - [arXiv] Real-time Multiple People Hand Localization in 4D Point Clouds. [
det.
oth.
] - [arXiv] Variational Graph Methods for Efficient Point Cloud Sparsification. [
oth.
] - [arXiv] Neural Style Transfer for Point Clouds. [
oth.
] - [arXiv] OREOS: Oriented Recognition of 3D Point Clouds in Outdoor Scenarios. [
pos.
oth.
] - [arXiv] FVNet: 3D Front-View Proposal Generation for Real-Time Object Detection from Point Clouds. [code] [
det.
aut.
] - [arXiv] Unpaired Point Cloud Completion on Real Scans using Adversarial Training. [
oth.
] - [arXiv] MortonNet: Self-Supervised Learning of Local Features in 3D Point Clouds. [
cls.
seg.
] - [arXiv] DeepPoint3D: Learning Discriminative Local Descriptors using Deep Metric Learning on 3D Point Clouds. [
cls.
rel.
oth.
] - [arXiv] Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. [pytorch] [
det.
tra.
aut.
] 🔥 - [arXiv] Graph-based Inpainting for 3D Dynamic Point Clouds. [
oth.
] - [arXiv] nuScenes: A multimodal dataset for autonomous driving. [link] [
dat.
det.
tra.
aut.
] - [arXiv] 3D Backbone Network for 3D Object Detection. [code] [
det.
aut.
] - [arXiv] Adversarial Autoencoders for Compact Representations of 3D Point Clouds. [pytorch] [
rel.
oth.
] - [arXiv] Linked Dynamic Graph CNN: Learning on Point Cloud via Linking Hierarchical Features. [
cls.
seg.
] - [arXiv] GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud. [tensorflow] [
cls.
seg.
] - [arXiv] Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. [tensorflow] [
det.
seg.
] - [arXiv] Differentiable Surface Splatting for Point-based Geometry Processing. [pytorch] [
oth.
] - [arXiv] Spatial Transformer for 3D Points. [
seg.
] - [arXiv] Point-Voxel CNN for Efficient 3D Deep Learning. [
seg.
det.
aut.
] - [arXiv] Neural Point-Based Graphics. [project] [
oth.
] - [arXiv] Point Cloud Super Resolution with Adversarial Residual Graph Networks. [
oth.
] [tensorflow] - [arXiv] Blended Convolution and Synthesis for Efficient Discrimination of 3D Shapes. [
cls.
rel.
] - [arXiv] StarNet: Targeted Computation for Object Detection in Point Clouds. [tensorflow] [
det.
] - [arXiv] Efficient Tracking Proposals using 2D-3D Siamese Networks on LIDAR. [
tra.
] - [arXiv] SAWNet: A Spatially Aware Deep Neural Network for 3D Point Cloud Processing. [tensorflow] [
cls.
seg.
] - [arXiv] Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud. [
det.
aut.
] - [arXiv] PyramNet: Point Cloud Pyramid Attention Network and Graph Embedding Module for Classification and Segmentation. [
cls.
seg.
] - [arXiv] PointRNN: Point Recurrent Neural Network for Moving Point Cloud Processing. [tensorflow] [
tra.
oth.
aut.
] - [arXiv] PointAtrousGraph: Deep Hierarchical Encoder-Decoder with Point Atrous Convolution for Unorganized 3D Points. [tensorflow] [
cls.
seg.
] - [arXiv] Tranquil Clouds: Neural Networks for Learning Temporally Coherent Features in Point Clouds. [
oth.
] - [arXiv] 3D-Rotation-Equivariant Quaternion Neural Networks. [
cls.
rec.
] - [arXiv] Point2SpatialCapsule: Aggregating Features and Spatial Relationships of Local Regions on Point Clouds using Spatial-aware Capsules. [
cls.
rel.
seg.
] - [arXiv] Geometric Feedback Network for Point Cloud Classification. [
cls.
] - [arXiv] Relation Graph Network for 3D Object Detection in Point Clouds. [
det.
] - [arXiv] Deformable Filter Convolution for Point Cloud Reasoning. [
seg.
det.
aut.
] - [arXiv] PU-GCN: Point Cloud Upsampling via Graph Convolutional Network. [project] [
oth.
] - [arXiv] StructEdit: Learning Structural Shape Variations. [project] [
rec.
] - [arXiv] Grid-GCN for Fast and Scalable Point Cloud Learning. [
seg.
cls.
] - [arXiv] PointPainting: Sequential Fusion for 3D Object Detection. [
seg.
det.
] - [arXiv] Transductive Zero-Shot Learning for 3D Point Cloud Classification. [
cls.
] - [arXiv] Geometry Sharing Network for 3D Point Cloud Classification and Segmentation. [pytorch] [
cls.
seg.
] - [arvix] Deep Learning for 3D Point Clouds: A Survey. [code] [
cls.
det.
tra.
seg.
] - [arXiv] Spectral-GANs for High-Resolution 3D Point-cloud Generation. [
rec.
oth.
] - [arXiv] Point Attention Network for Semantic Segmentation of 3D Point Clouds. [
seg.
] - [arXiv] PLIN: A Network for Pseudo-LiDAR Point Cloud Interpolation. [
oth.
] - [arXiv] 3D Object Recognition with Ensemble Learning — A Study of Point Cloud-Based Deep Learning Models. [
cls.
det.
]
2020
- [AAAI] Morphing and Sampling Network for Dense Point Cloud Completion. [pytorch] [
oth.
] - [AAAI] TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. [code] [
det.
aut.
] - [AAAI] Point2Node: Correlation Learning of Dynamic-Node for Point Cloud Feature Modeling. [
seg.
cls.
] - [AAAI] PRIN: Pointwise Rotation-Invariant Network. [
seg.
cls.
] - [CVPR] Just Go with the Flow: Self-Supervised Scene Flow Estimation. [code][
aut.
oth.
] - [CVPR] SGAS: Sequential Greedy Architecture Search. [code] [
cls.
oth.
] - [CVPR] RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. [tensorflow] [
seg.
] - [CVPR] Learning multiview 3D point cloud registration. [code] [
reg.
] - [CVPR] PF-Net: Point Fractal Network for 3D Point Cloud Completion. [pytorch] [
oth.
] - [CVPR] MLCVNet: Multi-Level Context VoteNet for 3D Object Detection. [code] [
det.
] - [CVPR] SampleNet: Differentiable Point Cloud Sampling. [code] [
cls.
reg.
rec.
oth.
] - [CVPR] MINA: Convex Mixed-Integer Programming for Non-Rigid Shape Alignment. [
reg.
oth.
] - [CVPR] Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud Registration without Correspondences. [code] [
reg.
] - [CVPR] Attentive Context Normalization for Robust Permutation-Equivariant Learning. [code] [
cls.
] - [CVPR] Implicit Functions in Feature Space for Shape Reconstruction and Completion. [code] [
oth.
] - [CVPR] PointAugment: an Auto-Augmentation Framework for Point Cloud Classification. [
cls.
] - [WACV] FuseSeg: LiDAR Point Cloud Segmentation Fusing Multi-Modal Data. [
seg.
aut.
] - [arXiv] ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes. [
det.
] - [ECCV] Quaternion Equivariant Capsule Networks for 3D Point Clouds. [
cls.
] - [ECCV] PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding. [
cls.
seg.
det.
] - [ECCV] DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares. [code] [
oth.
] - [ECCV] DPDist: Comparing Point Clouds Using Deep Point Cloud Distance. [code] [
oth.
] - [IROS] GndNet: Fast Ground Plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. [code] [
seg.
aut.
] - [ICLR] AdvectiveNet: An Eulerian-Lagrangian Fluidic Reservoir for Point Cloud Processing. [code][
cls.
seg.
] - [arXiv] Parameter-Efficient Person Re-identification in the 3D Space. [code][
rel.
] 🔥
2021
- [ICLR] PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences. [
cls.
seg.
] - [CVPR] Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos. [code][
cls.
seg.
] - [CVPR] PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds. [code][
oth.
] - [ICRA] FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection. [code][
det.
seg.
] - [ICCV] MVTN: Multi-View Transformation Network for 3D Shape Recognition. [code][
det.
rel.
]
- Datasets
- Datasets |
- [KITTI] The KITTI Vision Benchmark Suite. [
det.
] - [ModelNet] The Princeton ModelNet . [
cls.
] - [ShapeNet] A collaborative dataset between researchers at Princeton, Stanford and TTIC. [
seg.
] - [PartNet] The PartNet dataset provides fine grained part annotation of objects in ShapeNetCore. [
seg.
] - [PartNet] PartNet benchmark from Nanjing University and National University of Defense Technology. [
seg.
] - [S3DIS] The Stanford Large-Scale 3D Indoor Spaces Dataset. [
seg.
] - [ScanNet] Richly-annotated 3D Reconstructions of Indoor Scenes. [
cls.
seg.
] - [Stanford 3D] The Stanford 3D Scanning Repository. [
reg.
] - [UWA Dataset] . [
cls.
seg.
reg.
] - [Princeton Shape Benchmark] The Princeton Shape Benchmark.
- [SYDNEY URBAN OBJECTS DATASET] This dataset contains a variety of common urban road objects scanned with a Velodyne HDL-64E LIDAR, collected in the CBD of Sydney, Australia. There are 631 individual scans of objects across classes of vehicles, pedestrians, signs and trees. [
cls.
match.
] - [ASL Datasets Repository(ETH)] This site is dedicated to provide datasets for the Robotics community with the aim to facilitate result evaluations and comparisons. [
cls.
match.
reg.
det
] - [Large-Scale Point Cloud Classification Benchmark(ETH)] This benchmark closes the gap and provides a large labelled 3D point cloud data set of natural scenes with over 4 billion points in total. [
cls.
] - [Robotic 3D Scan Repository] The Canadian Planetary Emulation Terrain 3D Mapping Dataset is a collection of three-dimensional laser scans gathered at two unique planetary analogue rover test facilities in Canada.
- [Radish] The Robotics Data Set Repository (Radish for short) provides a collection of standard robotics data sets.
- [IQmulus & TerraMobilita Contest] The database contains 3D MLS data from a dense urban environment in Paris (France), composed of 300 million points. The acquisition was made in January 2013. [
cls.
seg.
det.
] - [Oakland 3-D Point Cloud Dataset] This repository contains labeled 3-D point cloud laser data collected from a moving platform in a urban environment.
- [Robotic 3D Scan Repository] This repository provides 3D point clouds from robotic experiments,log files of robot runs and standard 3D data sets for the robotics community.
- [Ford Campus Vision and Lidar Data Set] The dataset is collected by an autonomous ground vehicle testbed, based upon a modified Ford F-250 pickup truck.
- [The Stanford Track Collection] This dataset contains about 14,000 labeled tracks of objects as observed in natural street scenes by a Velodyne HDL-64E S2 LIDAR.
- [PASCAL3D+] Beyond PASCAL: A Benchmark for 3D Object Detection in the Wild. [
pos.
det.
] - [3D MNIST] The aim of this dataset is to provide a simple way to get started with 3D computer vision problems such as 3D shape recognition. [
cls.
] - [WAD] [ApolloScape] The datasets are provided by Baidu Inc. [
tra.
seg.
det.
] - [nuScenes] The nuScenes dataset is a large-scale autonomous driving dataset.
- [PreSIL] Depth information, semantic segmentation (images), point-wise segmentation (point clouds), ground point labels (point clouds), and detailed annotations for all vehicles and people. [paper] [
det.
aut.
] - [3D Match] Keypoint Matching Benchmark, Geometric Registration Benchmark, RGB-D Reconstruction Datasets. [
reg.
rec.
oth.
] - [BLVD] (a) 3D detection, (b) 4D tracking, (c) 5D interactive event recognition and (d) 5D intention prediction. [ICRA 2019 paper] [
det.
tra.
aut.
oth.
] - [PedX] 3D Pose Estimation of Pedestrians, more than 5,000 pairs of high-resolution (12MP) stereo images and LiDAR data along with providing 2D and 3D labels of pedestrians. [ICRA 2019 paper] [
pos.
aut.
] - [H3D] Full-surround 3D multi-object detection and tracking dataset. [ICRA 2019 paper] [
det.
tra.
aut.
] - [Argoverse BY ARGO AI] Two public datasets (3D Tracking and Motion Forecasting) supported by highly detailed maps to test, experiment, and teach self-driving vehicles how to understand the world around them.[CVPR 2019 paper][
tra.
aut.
] - [Matterport3D] RGB-D: 10,800 panoramic views from 194,400 RGB-D images. Annotations: surface reconstructions, camera poses, and 2D and 3D semantic segmentations. Keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and scene classification. [3DV 2017 paper] [code] [blog]
- [SynthCity] SynthCity is a 367.9M point synthetic full colour Mobile Laser Scanning point cloud. Nine categories. [
seg.
aut.
] - [Lyft Level 5] Include high quality, human-labelled 3D bounding boxes of traffic agents, an underlying HD spatial semantic map. [
det.
seg.
aut.
] - [SemanticKITTI] Sequential Semantic Segmentation, 28 classes, for autonomous driving. All sequences of KITTI odometry labeled. [ICCV 2019 paper] [
seg.
oth.
aut.
] - [NPM3D] The Paris-Lille-3D has been produced by a Mobile Laser System (MLS) in two different cities in France (Paris and Lille). [
seg.
] - [The Waymo Open Dataset] The Waymo Open Dataset is comprised of high resolution sensor data collected by Waymo self-driving cars in a wide variety of conditions. [
det.
] - [A*3D: An Autonomous Driving Dataset in Challeging Environments] A*3D: An Autonomous Driving Dataset in Challeging Environments. [
det.
] - [PointDA-10 Dataset] Domain Adaptation for point clouds.
- [Oxford Robotcar] The dataset captures many different combinations of weather, traffic and pedestrians. [
cls.
det.
rec.
] - [PandaSet] Public large-scale dataset for autonomous driving provided by Hesai & Scale. It enables researchers to study challenging urban driving situations using the full sensor suit of a real self-driving-car. [
det.
seg.
] - [3D-FRONT 3D-FUTURE] [Alibaba] 3D-FRONT contains 10,000 houses (or apartments) and ~70,000 rooms with layout information. 3D-FUTURE contains 20,000+ clean and realistic synthetic scenes in 5,000+ diverse rooms which contain 10,000+ unique high quality 3D instances of furniture.
- [Campus3D] The Campus3D contains a photogrametry point cloud which has 931.7 million points, covering 1.58 km2 of 6 connected campus regions of NUS. The dataset are point-wisely annotated with a hierarchical structure of 24 semantic labels and contains 2,530 instances based on the labels. [MM 2020 paper][code][
det.
cls.
seg.
]
参考来源
https://cvpr2021.thecvf.com/
https://cvpr2022.thecvf.com/
论文与code查询网站:https://paperswithcode.com/
AI论文查询地址:https://arxiv.org/list/cs.AI/recent
论文:https://github.com/extreme-assistant/CVPR2021-Paper-Code-Interpretation综述:https://github.com/extreme-assistant/survey-computer-vision-2020\
- 推荐阅读:
<br>
cvpr2021/cvpr2020/cvpr2019/cvpr2018/cvpr2017(Papers/Codes/Project/Paper reading)
论文解读汇总:https://bbs.cvmart.net/articles/3031 <br>
论文分类汇总:https://bbs.cvmart.net/articles/4267 <br><br>
2000~2020年历届CVPR最佳论文代码,解读等汇总:http://bbs.cvmart.net/topics/665/CVPR-Best-Paper <br>
<br>
目录
8. CVPR2021最新信息及论文下载 <br>
7. CVPR2021论文分方向盘点 <br>
6. CVPR2020论文下载/代码/解读/直播 <br>
5. CVPR2020论文分方向盘点 <br>
4. CVPR2019全部论文下载/开源代码 <br>
3. CVPR2019论文分方向盘点 <br>
2. CVPR2019论文直播分享 <br>
1. CVPR2018/CVPR2017 <br>
8.CVPR2021最新论文分类汇总(持续更新)
- Papers/Codes/Project/PaperReading/Demos/直播分享/论文分享会等
<br>
- CVPR2021全部论文下载(共1661篇) 提取码:su7e
- CVPR2021 论文解读汇总 + 技术直播汇总
<br>
- CVPR2021 Oral论文汇总/解读
<br>
7.CVPR2021论文分方向盘点 <br>
- 一文看尽CVPR2021 2D 目标检测论文(27篇)
- 一文看尽CVPR2021 图像异常检测论文(6篇)
- 一文看尽CVPR2021 伪装目标检测+旋转目标检测论文(6篇)
- CVPR2021 论文大盘点:全景分割论文汇总(共15篇)
- CVPR2021 论文大盘点:人员重识别汇总(共26篇)
- CVPR2021 论文大盘点:行人技术汇总(共7篇)
- CVPR2021 论文大盘点:医学影像汇总(共22篇)
- CVPR2021 论文大盘点:超分辨率汇总(共32篇)
- CVPR2021 论文大盘点:图像修复汇总(共20篇)
- CVPR2021 论文大盘点:图像去噪汇总(共14篇)
- CVPR2021 论文大盘点:去雾去模糊汇总(共14篇)
- CVPR2021 论文大盘点:图像视频去雨汇总(共10篇)
- CVPR2021 论文大盘点:文本图像汇总(共17篇)
- CVPR2021 论文大盘点:人脸识别汇总(共15篇)
- CVPR2021 论文大盘点:人脸造假检测汇总(共9篇)
- CVPR2021 论文大盘点:图像压缩汇总(共5篇)
- CVPR2021 论文大盘点:遥感与航拍影像汇总(共7篇)
6.CVPR2020论文下载/代码/解读/直播
- Papers/Codes/Project/PaperReading/Demos/直播分享/论文分享会等
<br>
- CVPR2020全部论文下载(共1467篇)
<br>
提取码:pun7<br><br>
- CVPR2020 论文解读汇总 + 技术直播汇总
<br>
5.CVPR2020论文分方向盘点 <br>
- 20.CVPR 2020 论文大盘点-动作检测与动作分割(13篇)
<br>
- 19.CVPR 2020 论文大盘点-动作识别(21篇)
<br>
- 18.CVPR 2020 论文大盘点-光流(12篇)
<br>
- 17.CVPR 2020 论文大盘点-图像与视频检索(16篇)
<br>
- 16.CVPR 2020 论文大盘点-遥感与航拍影像处理识别(18篇)
<br>
- 15.CVPR 2020 论文大盘点-图像质量评价(7篇)
<br>
- 14.CVPR 2020 论文大盘点-图像修复 Inpainting (7篇)
<br>
- 13.CVPR 2020 论文大盘点-图像增强与图像恢复(22篇)
<br>
- 12.CVPR 2020 论文大盘点-去雨去雾去模糊(8篇)
<br>
- 11.CVPR 2020 论文大盘点-医学影像处理识别(19篇)
<br>
- 10.CVPR 2020 论文大盘点-抠图 Matting (3篇)
<br>
- 9.CVPR 2020 论文大盘点-图像分割(25篇)
<br>
- 8.CVPR 2020 论文大盘点-全景分割与视频目标分割(8篇)
<br>
- 7.CVPR 2020 论文大盘点-超分辨(21篇)
<br>
- 6.CVPR 2020 论文大盘点-目标检测(64篇)
<br>
- 5.CVPR 2020 论文大盘点-人脸技术(64篇
<br>
- 4.CVPR 2020 论文大盘点-目标跟踪(33篇)
<br>
- 3.CVPR 2020 论文大盘点-文本图像(16篇)
<br>
- 2.CVPR 2020 论文大盘点-行人检测与重识别(33篇)
<br>
- 1.CVPR 2020 论文大盘点-实例分割(18篇)
<br><br>
<br><br>
4.CVPR2019全部论下载/开源代码 <br>
- 全部链接:http://openaccess.thecvf.com/CVPR2019.py
<br>
- 下载链接:
<br>
链接:https://pan.baidu.com/s/1dhXrWFHeKeJ1kFsKBxQzVg 密码:f53l - CVPR 2019全部论文开源源码汇总Excel点这里
<br><br>
3.CVPR2019论文分方向盘点 <br>
- CVPR 2019 论文大盘点-目标跟踪篇
<br>
- CVPR 2019 论文大盘点-超分辨率篇
<br>
- CVPR 2019 论文大盘点-人脸技术篇
<br>
- CVPR 2019 论文大盘点—目标检测篇
<br>
- CVPR 2019 论文大盘点—文本图像篇
<br>
- CVPR2019模型剪枝论文汇总
<br><br>
2.CVPR2019论文直播分享 <br>
- 微软亚研院CVPR2019线下分享会视频回放及PPT下载
- 3/28晚点云分割分享回放
<br>
王鑫龙:联合分割点云中的实例和语义(开源,列表id 27)<br>
- 4月18日晚目标检测分享回放
<br>
CMU诸宸辰:基于Anchor-free特征选择模块的单阶目标检测(CVPR2019,列表id 88)<br>
- 5月9日晚单目标跟踪分享回放
<br>
张志鹏:基于siamese网络的单目标跟踪(CVPR2019 Oral,列表id 65)<br>
- [5月30日晚人脸识别分享回放
<br>
邓健康-CVPR2019:ArcFace 构建高效的人脸识别系统(CVPR2019,列表id 243):<br>
- 6月13日晚三维多人多视角姿态识别分享回放
<br>
董峻廷:多视角下多人三维姿态估计 CVPR2019,列表id 106<br>
1.CVPR2018/CVPR2017 <br>
- CVPR 2018全部论文下载百度云链接:https://pan.baidu.com/s/1bhYzNz2TGijUdfPIdyEGtg
<br>
密码:gyk2 - CVPR 2018论文解读汇总
- CVPR 2017全部论文下载百度云链接:https://pan.baidu.com/s/1p_If8S_AAgnTlZxfzBya2w
<br>
密码:o6tu - CVPR 2017论文解读集锦
参考链接 <br>
- https://mp.weixin.qq.com/s/YRcajgSTJq_evwtn7ZFo4A
<br>
- https://github.com/hoya012/CVPR-2019-Paper-Statistics
<br>
- https://github.com/jonahthelion/cvpr_with_code
<br>
- https://github.com/amusi/daily-paper-computer-vision
<br><br>
NLPs
Deep learning speech learning library
Py2neo 手册
Py2neo是一个客户端库和工具包,用于从Python应用程序和命令行中使用Neo4j 。该库支持 Bolt 和 HTTP,并提供高级 API、OGM、管理工具、交互式控制台、Pygments 的 Cypher 词法分析器以及许多其他花里胡哨。从版本 2021.1 开始,Py2neo 包含对路由的完全支持,正如 Neo4j 集群所公开的那样。这可以使用neo4j://…URI 或传递routing=True给Graph构造函数来启用。https://py2neo.org/2021.1/
数据集
中文、英文NER、英汉机器翻译数据集。中英文实体识别数据集,中英文机器翻译数据集,中文分词数据集:https://github.com/quincyliang/nlp-public-dataset
CTB词性标注集
ck: https://help.aliyun.com/document_detail/179146.html?scm=20140722.184.2.173
标注标签说明:https://verbs.colorado.edu/chinese/segguide.3rd.ch.pdf
https://blog.csdn.net/qq_40332976/article/details/120331450
资料汇总
一个轻量级、简单易用的 RNN 唤醒词监听器: https://github.com/MycroftAI/mycroft-precise
zh:http://fancyerii.github.io/books/mycroft-precise/
基于树莓派的人工智能小车,实现识别、提示、智能旅游线路、离线图像:
https://github.com/dalinzhangzdl/AI_Car_Raspberry-pi
中文NLP数据集:https://github.com/CLUEbenchmark/CLUEDatasetSearch
模型:https://github.com/CLUEbenchmark/CLUE
中文 NLP 资源精选列表 中文自然语言处理相关资料:
https://github.com/crownpku/Awesome-Chinese-NLP
视觉聊天机器人:https://paperswithcode.com/paper/visual-dialog
Bert/Transformer模型压缩与优化加速: https://blog.csdn.net/nature553863/article/details/120292394:
可以压缩 BERT 的所有方式:http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html
https://www.leiphone.com/category/academic/MkV1j604LvPt1wcx.html
BERT轻量化探索—模型剪枝(BERT Pruning)—Rasa维度剪枝:https://blog.csdn.net/ai_1046067944/article/details/103609152
压缩 BERT 以加快预测速度:https://rasa.com/blog/compressing-bert-for-faster-prediction-2/
论文综述与BERT相关最新论文:https://github.com/tomohideshibata/BERT-related-papers
中文自然语言排行榜及论文查询:https://www.cluebenchmarks.com/index.html
计算语言学国际会议论文集:https://aclanthology.org/volumes/2020.coling-main/
计算语言学协会第 58 届年会论文集:https://aclanthology.org/volumes/2020.acl-main/
计算语言学2协会2021年会论文搜集:https://aclanthology.org/events/acl-2021/
中文BERT全词掩蔽预训练(中文BERT-wwm系列模型)https://github.com/ymcui/Chinese-BERT-wwm
一个大规模的中文跨领域面向任务的对话数据集:https://github.com/thu-coai/CrossWOZ
关于ConvLab-2:用于构建、评估和诊断对话系统的开源工具包(支持中文):https://github.com/thu-coai/ConvLab-2
视觉和语言预训练模型 (VL-PTM) 的最新进展(语音视觉融合):https://github.com/yuewang-cuhk/awesome-vision-language-pretraining-papers
深度学习和自然语言处理阅读清单:https://github.com/IsaacChanghau/DL-NLP-Readings
视觉问答 (VQA)(图像/视频问答)、视觉问题生成、视觉对话、视觉常识推理和相关领域的精选列表:https://github.com/jokieleung/awesome-visual-question-answering
汇总得不错的nlp学习资料:https://jackkuo666.github.io/
dl4nlp自然语言处理深度学习课程材料:https://github.com/liu-nlp/dl4nlp
论文与数据集网站:https://www.ai2news.com/area/
HanLP的Python接口,支持自动下载与升级HanLP,兼容py2、py3。内部算法经过工业界和学术界考验,配套书籍《自然语言处理入门》已经出版,欢迎查阅随书代码:https://github.com/jiajunhua/hankcs-pyhanlp/tree/3fc9c7d8a3f5eae00988db743c44b7708520b5f1
pyhanlp文本训练与预测API接口
from pyhanlp import * |
原创来自这里:https://www.jianshu.com/p/0a131e042238
好东西:https://github.com/Kyubyong/nlp_tasks
https://github.com/songyingxin/NLPer-Interview
总结梳理自然语言处理工程师(NLP)需要积累的各方面知识,包括面试题,各种基础知识,工程能力等等,提升核心竞争力 https://github.com/DA-southampton/NLP_ability
史上最全Transformer面试题
答案解析(1)-史上最全Transformer面试题
Pytorch代码分析–如何让Bert在finetune小数据集时更“稳”一点
解决老大难问题-如何一行代码带你随心所欲重新初始化bert的某些参数(附Pytorch代码详细解读)
3分钟从零解读Transformer的Encoder
原版Transformer的位置编码究竟有没有包含相对位置信息
BN踩坑记–谈一下Batch Normalization的优缺点和适用场景
谈一下相对位置编码
NLP任务中-layer-norm比BatchNorm好在哪里
谈一谈Decoder模块
Transformer的并行化
Transformer全部文章合辑
RNN的梯度消失有什么与众不同的地方.md
VIT-如何将Transformer更好的应用到CV领域
好书:https://github.com/FudanNLP/nlp-beginner
论文与code:https://github.com/keon/awesome-nlp
跟踪自然语言处理的进展:https://github.com/sebastianruder/NLP-progress
元研究:https://research.facebook.com/research-areas/
此项目是机器学习(Machine Learning)、深度学习(Deep Learning)、NLP面试中常考到的知识点和代码实现,也是作为一个算法工程师必会的理论基础知识。https://github.com/NLP-LOVE/ML-NLP
https://github.com/graykode/nlp-tutorial/blob/master/5-2.BERT/BERT.ipynb
NLP-Models-Tensorflow https://github.com/huseinzol05/NLP-Models-Tensorflow
相似度 https://github.com/duoergun0729/nlp/blob/master/%E6%96%87%E6%A1%A3%E7%9B%B8%E4%BC%BC%E5%BA%A6.md
https://github.com/duoergun0729/nlp
https://github.com/fighting41love/funNLP
https://github.com/keon/awesome-nlp
https://github.com/duoergun0729/nlp
https://github.com/sebastianruder/NLP-progress
https://github.com/graykode/nlp-tutorial
https://github.com/DA-southampton/NLP_ability
NLP 领域经典书籍《Speech and Language Processing》第三版 https://web.stanford.edu/~jurafsky/slp3/
项目是机器学习(Machine Learning)、深度学习(Deep Learning)、NLP面试中常考到的知识点和代码实现,也是一个算法工程师会必选的理论基础知识 https://github.com/NLP-LOVE/ML-NLP
NLP以及相关的学习实践 https://github.com/jarvisqi/machine_learning
机器学习&深入学习资料笔记&基本算法实现&资源整理(ML / CV / NLP / DM…)https://github.com/fire717/Machine-Learning
Datawhale成员整理的面经内容,包括机器学习,CV,NLP,推荐 https://github.com/datawhalechina/daily-interview
人工智能实战大学(面试)学习路线图 https://github.com/tangyudi/Ai-Learn
2018/2019/校招笔记/春招/秋招/自然者语言处理(NLP)/深度机器学习(深度学习)/学习(机器学习) https://github.com/DarLiner/Algorithm_Interview_Notes-Chinese
深度学习算法教程
深度学习100例、深度识别学习、图片分类、目标、目标检测、自然语言处理nlp、文本分类、TensorFlow、PyTorch https://github.com/kzbkzb/Python-AI
pyhanlp句法训练
python train.py |
spacy句法
句法是指句子的各个组成部分的相互关系,句法分析分为句法结构分析(syntactic structure parsing)和依存关系分析(dependency parsing)。句法结构分析用于获取整个句子的句法结构,依存分析用于获取词汇之间的依存关系,目前的句法分析已经从句法结构分析转向依存句法分析。
依存语法通过分析语言单位内成分之间的依存关系揭示其句法结构,主张句子中核心动词是支配其它成分的中心成分,而它本身却不受其它任何成分的支配,所有受支配成分都以某种依存关系从属于支配者。
在20世纪70年代,Robinson提出依存语法中关于依存关系的四条公理:
- 一个句子中只有一个成分是独立的;
- 其它成分直接依存于某一成分;
- 任何一个成分都不能依存与两个或两个以上的成分;
- 如果A成分直接依存于B成分,而C成分在句中位于A和B之间,那么C或者直接依存于B,或者直接依存于A和B之间的某一成分;
SpaCy 中文模型:https://github.com/howl-anderson/Chinese_models_for_SpaCy
https://blog.csdn.net/lllhhhv/article/details/123335675
zh_core_web_trf、zh_core_web_md 等,它们的区别在于准确度和体积大小, zh_core_web_sm 体积小,准确度相比zh_core_web_trf差,zh_core_web_trf相对就体积大。这样可以适应不同场景.
数据参考
hanlp.pretrained.dep。CTB5_BIAFFINE_DEP_ZH= ‘https://file.hankcs.com/hanlp/dep/biaffine_ctb5_20191229_025833.zip'
在 CTB5 上训练的Biaffine LSTM 模型(Dozat & Manning 2017)。
hanlp.pretrained.dep。CTB7_BIAFFINE_DEP_ZH= ‘https://file.hankcs.com/hanlp/dep/biaffine_ctb7_20200109_022431.zip'
在 CTB7 上训练的Biaffine LSTM 模型(Dozat & Manning 2017)。
hanlp.pretrained.dep。CTB9_DEP_ELECTRA_SMALL= ‘https://file.hankcs.com/hanlp/dep/ctb9_dep_electra_small_20220216_100306.zip'
Electra 小型编码器 ( Clark et al. 2020 ) 和 Biaffine 解码器 ( Dozat & Manning 2017 ) 在 CTB9-SD330 上训练。性能为 UAS=87.68% LAS=83.54%。
hanlp.pretrained.dep。CTB9_UDC_ELECTRA_SMALL= ‘https://file.hankcs.com/hanlp/dep/udc_dep_electra_small_20220218_095452.zip'
Electra 小型编码器 ( Clark et al. 2020 ) 和 Biaffine 解码器 ( Dozat & Manning 2017 ) 在 CTB9-UD420 上训练。性能是 UAS=85.92% LAS=81.13% 。
hanlp.pretrained.dep。PMT1_DEP_ELECTRA_SMALL= ‘https://file.hankcs.com/hanlp/dep/pmt_dep_electra_small_20220218_134518.zip'
Electra 小型编码器 ( Clark et al. 2020 ) 和 Biaffine 解码器 ( Dozat & Manning 2017 ) 在 PKU Multi-view Chinese Treebank (PMT) 1.0 ( Qiu et al. 2014 ) 上训练。性能是 UAS=91.21% LAS=88.65%。
hanlp.pretrained.dep。PTB_BIAFFINE_DEP_EN= ‘https://file.hankcs.com/hanlp/dep/ptb_dep_biaffine_20200101_174624.zip'
在 PTB 上训练的Biaffine LSTM 模型(Dozat & Manning 2017 )。
参考来自:https://hanlp.hankcs.com/docs/api/hanlp/index.html
ctb数据集相关论文
hanlp句法分析训练问题解决:https://bbs.hankcs.com/t/topic/2868
命名实体识别:
命名实体识别从早期基于词典和规则的方法,到传统机器学习的方法, 后来采用基于深度学习的方法,一直到当下热门的注意力机制、图神经网络等研究方法, 命名实体识别技术路线随着时间在不断发展。
https://github.com/TianRanPig/chinese_ner
https://github.com/CLUEbenchmark/CLUENER2020
https://github.com/hemingkx/CLUENER2020
https://github.com/lonePatient/BERT-NER-Pytorch
https://github.com/lemonhu/NER-BERT-pytorch
https://github.com/google-research/bert
https://github.com/TobiasLee/ChineseNER
https://github.com/PottermoreIron/BERT-BiLSTM-CRF-For-Practice
https://github.com/luopeixiang/named_entity_recognition
https://github.com/F-debug/Medical-named-entity-recognition
https://github.com/kyzhouhzau/BERT-NER
https://github.com/macanv/BERT-BiLSTM-CRF-NER
https://github.com/xuanzebi/BERT-CH-NER
https://github.com/huggingface/transformers
使用bert做领域分类、意图识别和槽位填充任务 https://github.com/xiaopp123/bert-joint-NLU
基于pytorch的中文意图识别和槽位填充 https://github.com/taishan1994/pytorch_bert_intent_classification_and_slot_filling
基于BERT+Tensorflow-1.15+Horovod-0.22的NLU(意图识别+槽位填充)分布式GPU训练模块 https://github.com/jx1100370217/JointBERT_nlu_tf
使用bert做领域分类、配置识别和位置填充任务 https://github.com/xiaopp123/bert-joint-NLU
中文语言理解基准、基准中文语言理解评估基准:数据集、预训练模型、语料库 https://github.com/CLUEbenchmark/CLUE
用于联合意图分类和插槽填充的 BERT https://github.com/monologg/JointBERT
https://github.com/yuanxiaosc/BERT-for-Sequence-Labeling-and-Text-Classification
https://github.com/pymacbit/BERT-Intent-Classification
https://github.com/ensembles4612/medical_intent_detector_using_BERT
https://github.com/AdamLouly/Intent-Classifier-using-BERT-and-TF2/blob/master/BERT2INTENT.ipynb
https://github.com/sz128/slot_filling_and_intent_detection_of_SLU
https://github.com/471417367/bert_intention_zh
数据集自动标注工具–释放AI潜力!https://www.modelfun.cn/home
实体识别数据集 https://github.com/juand-r/entity-recognition-datasets
ner综述: https://blog.csdn.net/weixin_45884316/article/details/118684681
使用 CLIP 将图像和句子嵌入到固定长度的向量中 https://github.com/jina-ai/clip-as-service
other:
https://github.com/Rhine97/NLP-NER-models/tree/master/JupyterNotebook_Version/dataset
https://github.com/Hyfred/Pytroch_NER_tutorial
https://github.com/cs230-stanford/cs230-code-examples/tree/master/pytorch/nlp
https://github.com/kamalkraj/BERT-NER
参考:https://github.com/kyzhouhzau/NLPGNN
[1] BERT:用于语言理解的深度双向转换器的预训练 |
命名实体识别(NER)标注神器: https://blog.csdn.net/qq_44193969/article/details/123298406
实践:https://blog.csdn.net/qq_44193969/article/details/116008734
https://github.com/seanzhang-zhichen/PytorchBilstmCRF-Information-Extraction
https://blog.csdn.net/weixin_40846933/article/details/106384566